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Abstract--Simplified thermal models m laser and electron beam surface hardening can be very useful to 
mdustnal users Hardening depth as a functmn of austenmzauon temperature and Peclet number is 
evaluated for one-dimens~onal stationary and two-dimensional urn form stnp moving heat source problems 
~mthout melting. Reliable correlaUons for predmtlng both hardening depths and maximum temperatures 
are given m terms of dlmenmonless meaningful parameters Calculated values are also compared w~th 

expenmental results reported by other authors 

INTRODUCTION 

SEVERAL solutions of the temperature field m a semi- 
mfimte solid heated by a moving heat source can 
be applied m numerous mechanical processes, e.g m 
sliding solids and m surface treatments [1, 2] The 
latter have recently drawn a great deal of attention m 
industrial applications, due to the development of 
high-power laser surface treatments of metals. Tbere- 
fore, it is felt a growing need of models predicting the 
resultant temperature field in the bodies, as simple as 
to be statable for industrial users 

A stmphfied model proposed by Chen and Lee [3] 
showed the existence of a critical velocity below which 
the effects of a Gaussian moving heat source become 
neghgable and the temperature field is reasonably 
coincident w~th the one due to a stationary source 
Kou et al [4] developed a finite-difference numencal 
model for the three-dimensional heat flow in a semi- 
infinite body with a rectangular moving spot. Both 
surface heat losses and temperature dependence of 
surface absorptivity and thermal properties were 
taken into account Should thermal properties be 
assumed constant, a better agreement with the vari- 
able properties model is obtained if properties are 
evaluated at a temperature above the austemtizatlon 
one rather than at room temperature. The calculated 
results based on high-temperature constant thermal 
properties were m a good agreement with exper- 
imental ones from the same authors By assuming no 
heat losses, constant absorptivity and properties, a 
very simple correlation predicting the maximum sur- 
face temperature for a square spot was given. It 
approaches that of the one-dimensional (l-D) model, 

for Peclet numbers higher than 10 La Rocca [5] gave 
a detaded analys~s of the 1-D models for both a semi- 
infinite body and a finite slab Ashby and Easterhng 
[6] and Li et al. [7] denved approximate solutions of 
the thermal field for a Gausslan moving heat source. 
Equations for the temperature field were combined 
with kinetic equations describing the homogemzatlon 
of austenite and were able to predict the structure and 
the hardness of the treated regmn as a function of 
depth below the surface On the basis of experimental 
results, Davas et al [8] modified the solution for the 
hardening depth as a function of the power and vel- 
ocity of a Gaussian beam proposed mref. [9] More- 
over, startmg from the equation of heat conduction 
for a Gausslan moving source, they performed an 
asymptotic analysis revolving several approxi- 
mations, which yielded simplified solutions. Variable 
specific heat is accounted for by a quadratic approxi- 
mation that cannot render the behaviour at the Curie 
point and makes the solutions difficult. For large 
Peclet numbers, the problem of the heat transfer 
around the contact region of sliding solids was 
reduced by Yuen [10] to a transient I-D heat con- 
ducUon m stationary bodies case. The simple model 
prowded useful results only within the contact region. 
The same author [11] derived closed form expressions 
for the temperature fields which compared well with 
numencal solutions for Peclet numbers greater than 
10. Festa et al [12] analysed the two-dimensional (2- 
D) solution for a uniform stnp heat source moving at 
a constant velocity along the surface of a semi-infinite 
body and denved the ratio between the maximum 
temperature given by the 2-D model and that given 
by the I-D model This ratio can be used for esti- 
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NOMENCLATURE 

b hot spot half-width 
k thermal conductivity 
K0 modified Bessel function of the second 

kind, order zero 
n polynomial degree 
Pe Peclet number, equation (2b) 
q heat flux 
t time 
T temperature 
T + &menslonless temperature, equation (2c) 
T* dimensionless temperature, equations (7) 

and (7') 
v heat source velocity 
v heat source vectorial velocity 
x, z Cartesmn coordinates 
X, Z dimensionless Cartesmn coordinates, 

equations (2a). 

Greek symbols 
,, thermal dlffusivlty 
A devmtlon, 100 (Zh e-Zh)/Zh~ 

variable, equations (2a) 
/1 Integration varmble 

dimensionless time, equations (2a) 
z dwell time_ 

Subscnpts 
l-D,z or 1 stationary one-dlmens.onal 
2-D,v or 2 moving two-dImensmnal 
c austenmzat~on 
e experimental 
h hardening 
m maximum 

mating the range of Peclet number and depth withm 
which the predictions of the two models are m a satis- 
factory agreement 

The two-dimensional temperature field due to a 
uniform strip heat source over the surface of a semi- 
infinite body, (2-D)L,, can be very useful in modelling 
both high power laser surface treatments with a square 
spot and electron beam treatments, where xy beam 
scanning is earned out. As already noted, the simplest 
1-D stationary model with uniform heat flux acting 
over a semHnfinite body for a finite time, ( I -D) ,  can 
be employed only for large Peclet numbers_ The (2- 
D),, solution, derived by Jaeger [1] and Blok [13], has 
been widely used (see for instance refs. [11, 12]). 

In laser and electron beam sohd state hardening 
various requirements must be fulfilled a limited 
power of the heat source, no surface melting and a 
given hardening depth must be taken into account. 
To this aim, simplified models are useful tools for 
industrml users They should predict hardening 
depths and maximum surface temperatures by easy 
and reliable correlations m terms of physically mean- 
mgful dimensionless parameters 

In this paper reference is made to surface treatments 
of hardenable steels by solid state hardening and the 
following assumptions are made (i) no surface melt- 
mg occurs, (ii) austemte transformation occurs at any 
depth at which the dynamic transformation tem- 
perature is attained for any length of time, (m) cooling 
rate =s fast enough to ensure hardening of all the 
austemtized zone. Using (2-D),. and (I-D)~ models, 
hardening depth as a function of austemtizauon tem- 
perature and Peclet number is evaluated m ranges of 
the involved variables being of practical interest. For 
the (l-D), problem both maximum temperatures 
attained at various depths and hardening depths 
are non-dimensionally correlated with process 

parameters. For the (2-D), model a correlation is 
derived, which predicts hardening depths for given 
process parameters as well as the maximum surface 
temperature is simply correlated with the Peclet num- 
ber Eventually, theoretical predictions are compared 
with experimental results reported in ref [4]. 

MATHEMATICAL DESCRIPTION AND 
SOLUTION 

The exact solutions of  hnear heat conduction prob- 
lems m a semi-infinite isotroplc homogeneous body 
at uniform mmal temperature heated by a surface heat 
source are presented in ref. [5] for a stationary uniform 
constant heat flux over the whole surface during a 
finite time, (I-D),, and in refs [12, 14] for a moving 
uniform constant strip 2b wide, (2-D)~, With reference 
to Figs. l(a) and (b), respectively, thermal properties 
being assumed independent of position, the soluuon 
of the (I-D), problem is 

--~(O(,--~)'/2,erfcI(4ot(t z-r)),/2]} (1) 

where 

t~(t) _ {O1 for t ~ r  
for t > r  

z being the dwell time, that is the amount of t~me the 
spot on the surface is exposed to the uniform and 
constant heat flux (m the (2-D)L. problem ~t can be 
expressed as z = 2b/v) The solution of the (2-D), 
problem is 
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FIG. 1 SemHnfin,te body heated over the surface: (a) urn- 
form heat flux for a finite time amount, (b) moving heat 

source 2b w~de 

q°°tl/2 [ ~ e x p ( _ 4 - ~  ) T2_o, , (x, z, t) - ~ ~0 

I [ v (x+b) /v - t+#]  
x err (2~1/2 (2-~W 2 ._] 

d. 
- e r f  (2~1/2 (-~p)i7: -jj~-r~. (1') 

In equations (1) and (1') Tls the temperature rise 
The above equations can be written m dimen- 

sionless form Let 

x z # t 
x =  z = - -  C = -  ~ = -  

( 4 0 t z )  I,'2 , (4az) I /2  ' "[ ' T 

vb [ 2b ]: 
Pe = ~ = k(4"'O ,/~j 

(2a) 

(2b) 

T 
T + = - -  (2c) 

2bqo/k 

For the sake of brevity, T +1-0., and T2.D,~,+ wall be indi- 
cated as T + and T~-, henceforth 

Then, equations (1) and (1') can be written as 

T~ (Z, 4, ee) = Pe- ,/2 {4 i:: lerfc (Z/¢ i/:) 

- 6 ( 0 ( ¢ -  I) 1/2 ierfc [Z/(4- 1) '/:]} (3) 

where 

f0 for ~--.<1 
~i (~) -  for ~ > 1 

and 

T~ (X, Z, ~, Pe) - 4(n Pe~ ~'2 exp - 

x{erf[Pe '/:(X/Pe':2+I/2)-~+~]~,~ ] 

- e r f ~ P e  '/: (X/Pe'::- 1 /2 ) -  ~ +( ] '~  d ~  
L ¢"' J)t (y) 

Equations (3) and (3') allow the evaluation of the 
depth, Z,, where the austeniuzation temperature. 
T + , is attained, provided Z is considered as the depen- 
dent variable Thus, first of all the maximum tem- 
perature at every depth must be determined Th~s can 
be accomphshed by correlating Z wRh the ume, ~, 
at which maximum temperature is attained For the 
(1-D). model La Rocca [5] gwes 

~(4-1)  In [4/(¢ - 1)] = 2Z:. (4) 

For the (2-D)o model, any X undergoes the same 
temperature profiles as a functmn of ¢, for gwen 
Z and Pe It is suitable to write the equation for 
X = Pe1:2/2, as shown in ref [12] 

exp ( -  2Pe)Ko { 2[( Z 2 + Pe(l - ~)2)pe] ,/2} 

-Ko{2I(Z2+Pe ¢:)Pe] In} = 0 (4') 

For the (l-D), solution, introducing ~ =f(Z)  from 
equation (4) into equation (3) yields 

T+m(Z, Pe) = F(Z) Pe- 1/2 (5) 

For Z = 0, equation (5) becomes 

T~~(O, Pe) = (n Pe)-i/2 (6) 

Let 
T+m(Z, Pe) 

TBm = T+ (0 ,Pe) (7) 

dwldlng equaUon (5) by equation (6) yields 

T*m(Z) = n'n F(Z) (8) 

For the (2-D),, solution, by introducing into equa- 
tion (Y) 4 = g(Z, Pe) from equation (4'), one gets 

r~.m(Z, Pe) = (n Pe)- 'riG(Z, Pe). (5') 

Let 

T~.m (Z, Pe) 
T*m = (7') 

T ~  (0, Pe) 

dividing equation (5') by equation (6) yields 

T~.,,(Z, Pe) = G(Z, Pe). (8') 

The dimensionless temperature in equations (7) and 
(7') IS physically meaningful and simpler than that m 
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equation (2c); furthermore, it makes the maximum 
temperature independent of the Peclet number 

The hardening depth can be obtained by inverting 
equations (8) and (8') This yields, for the (l-D)~ 

Zh = F-I (T*~)  (9) 

when T?m is equal to T~* and, for the (2-D), 

Zh = Gz '(T*~, Pe) (9') 

when T~.m IS equal to T* 
Since the reversion of equations (8) and (8") cannot 

be performed analytically, it was carried out by 
empirical expressions. Zh values were calculated iter- 
atlvely by equations (3) and (3'), as a functmn of Pe 
and T + and T~m, for (1-D)T and (2-D),,, respectwely I , m  

RESULTS 

The simplified models presented m the preceding 
sectmn were used for a rather easy evaluation of hard- 
enmg depth and maximum surface temperature in the 
high heat flux surface treatment of materials. 

Hardening depth values were calculated at an 
approximation of 10-9 for the (l-D), and of 10-5 for 
the (2-D)L,. The soluuon of equations (4) and (4') was 
carried out by the Newton-Raphson method at an 
approximation of 10-9; the modified second kind 
Bessei functions, evaluated through the expressions 
gwen m Chap 9 of re/'. [15], are affected by a relatwe 
error of magnitude 10 -9 Maximum temperature 
values for the (2-D)L, were evaluated by a numerical 
lntegratmn of equation (3') at an approximauon of 
10- 5 The error funcuon in equation (3') and lerfc (x) 
in equatmn (3) were evaluated by the expressions 
given m Chap 7 of ref. [15] Calculatmns were made 
for10-2~<Pe<~102,005~<T + ~ < l a n d 0 ~ < Z ~ < 4  

Results are first presented m diagram form and 
in terms of the dimensionless temperature defined in 
equatmn (2c), which allows a direct comparison 
between the predlctmns of (1-D)T and (2-DL models 
Hardening depth as a function of Peclet number at 
various austeniuzatlon temperatures is presented in 
Figs 2 and 3 for (2-D)~, and (I-D), models, respec- 

Zhl \ \ \ \ \ \ \~ (I-[:)), 
,o 
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FIG 2 Hardemng depth vs Peclet number at various austen- 
ltlZatlon temperatures m (2-D), model 
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FIG 3 Hardening depth vs Peclet number at various austen- 
]t]zat]on temperatures m (l-D), model 

ttvely They show that, for a given Zh, the higher T~* 
the lower Pe_ This means that in the (2-D), the lower 
the heat flux the lower the velocity of the spot for a 
gaven width of the strip and a gwen thermal dlffUSlVlty. 
Figures show, also, that the lower T + the higher the 
slope of the curves. As expected, Zh values predicted 
by the two models are in good agreement for high 
Peclet numbers (> 10) while at low values (<  1) the 
(l-D)~ overpredlcts the hardening depth. Figure 2 sug- 
gests that significant hardening depths can be achieved 
with a practically stationary source, that is for very 
low Peclet numbers. 

Maxlmum surface temperatures vs Peclet numbers, 
according to the (2-D), model, are presented m Fig 
4, which allows an easy comparison between the 
maximum temperature attained in the material and 
its melting temperature. 

Hardening depth vs T + at various Pe is plotted in 
Fig. 5, which suggests considerations stmllar to those 
resulting from Fig 2. Furthermore, for l0 ~< Pe, the 
hJgh slope of the curves discloses how the accurate 
prediction of hardening depth strongly depends on 
the good knowledge of austemtizatlon temperatures 

FIG 4 
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Maximum surface temperature vs Peclet number m 
(2-D), model 
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FIG 6 Maximum temperature vs depth m (I-D), model. 

Maxtmum temperature correlatzons 
In the following, correlations for the prediction of  

maximum temperature are presented. They are based 
on both models and are within ranges of  variables of  
practical interest. For  the ( l -D) ,  problem the 
maximum temperature attained at various depths has 
been correlated to the depth by the following equa- 

t ions.  

T'~m = ao +al exp (a2Z) (10a) 

f o r 0 ~ < Z ~ <  l a n d  

T~',, = exp [-- (ao + a l Z  +a2Z 2 + - +a.Z~)] 

(10b) 

for 0~<Z~< 1 and n = 2  and 3, the relevant 
coeffioents being reported m Table 1. This discloses 

I O 

.9  

.8 
Equation 

//" (8') 
.7 / O (II) 

/ 
.6 , I L , , , , , I  I , , , , ~ 1  

I 0  "t 3 10 0 3 I0  P e  3 

FIG_ 7. Maximum surface temperature vs Peclet number m 
(2-D)~ model 

high values of  regression coeffioents for all the pro- 
posed correlattons It  can be noted that equation (10a) 
is suitably mveruble for an easy evaluation o f F -  t(T) 
In F~g. 6 the maximum temperature T~m Is plotted vs 
depth, Z, according to equation (8), together with 
some values derived from equations (10). The figure 
clearly shows that in solid state hardemng of  steels Zh 
values cannot be higher than about  0.4 since this value 
yields T~.m -~ 0.5, namely at the surface the melting 
temperature (",  1600°C) is attained for an austen- 
ltlzation temperature of  800°C. 

The maximum temperature attained at the surface 
was correlated with Peclet number in the form 

T~.m = [0.14304 + 0.99566(Pe + 0.0205)- 0 7]- t 

( l l )  

for 0.I ~< Pe ~ 30, with r 2 =  0.99992 and s.e = 
8 8 x 10 -4 In Fig. 7 the maximum temperature T~m 
Is plotted vs Peclet number at Z = 0, according to 
equation (8'), together with the same values derived 
from equatlon (I I). 

Hardening depth correlatwns 
The hardening depth was correlated with the 

austenmzatlon temperature. For  the ( l -D) ,  the 
expression is 

Zh = ao+aj In T~*+- '  + a . ( l n  T~*) ~ (12) 

for 0 2  ~< T~* ~< 1, where T~* = T~.m. Relevant 
coefficients are reported in Table 2 

For  the (2-D),, problem the correlation is 

Zh = ao+a~ In T~*+ - - + a . ( I n  T*) ~ (12') 

for 0 I ~< T* ~< 1, where T~* = T~,m. The coefliclents 

Table 1 Parameter and coel~oents of equations (10a) and (10b) 

Equataon n a 3 a 2 a~ ao r 2 s_e 

(10b) 3 - 0  27842 - 0  10529 I 93640 - 0  00831 0 99994 4 4 x 10- 3 
(lOb) 2 - -  - 0  53316 2 10568 -0_02121 0 99977 8.3 x 10- 3 
(10a) - -  - -  -224530 0.89516 0.11563 099973 3.4x 10 -3 
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Table 2 Parameter and coefficmnts of equation 1"12) 

n a 3 a 2  a~ a o  r 2 S . e  

3 - 0  12348 -0.15495 - 0  59076 - 0  0020535 0 99999 8 6 × 10-' 
2 - -  0 14465 -0.39982 0 021748 0 99890 1 0 × 10- 2 
1 - -  - -  - 0  62864 - 0  036393 0.98954 3 1 x 10--" 

in equation (12') depend on Peclet number.  This 
required a preliminary evaluatmn of  the above-men- 

tioned coefficients through the same equation (12') in 
a suitable range o f  Pe. Values for n = 2 and 3 are 

presented m Figs 8 and 9, respectively Figures show 
that, for Pe ---, oo, the values ofcoefficmnts m equation 

(12') tend to those o f  the corresponding coefficients 
m equat ion (12) for the (I-D)~ problem This agrees 
well with results presented in refs [11, 12]. Coefficients 
were correlated w~th Peclet numbers,  m the range 
0 1 ~ Pe <~ 30, by the following expressions. 

For  n = 2.  

ao = 0 0 2 7 1 8 7 - 0  071849Pe - °  5s 

+0.019715(Pe-0 sa)2 (13) 

with a regression coefficient (r ~) o f  0 99866 and a 
s tandard error  (s.c.) o f  8.6 x 1 0 - '  ; 

.4O 

81 

.2O 

-.20 

- . 4 0  

a o 

i 1 , , . . . .  i i I i i J l , , l  

I 0  1 3 tO ° 3 IO~ Pe 3 

FIG 8 Coefficients m equanon (12') for n = 2 
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- . 1 5  
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I0 "~ 3 I0 ° 3 10 Pe 3 

Fm 9 Coefficmnts m equation (12') for n = 3 

".30 

-.40 

aL = 0.40984+0 10780(Pe+0_05) -°95 (14) 

w i t h r  2 = 0 9 9 9 8 6 a n d s e  = 1 9 × 1 0 - 3 ;  

a2 = 0.12969+0 078220(Pe+0 025) -0 65 (15) 

w i t h r  2 = 0 9 9 9 4 6 a n d s e _ = l  7 × 1 0 - 3  

For  n = 3 

ao = [46.98815-30 71564(Pe+3)  ° 5]- t (16) 

with r 2 = 0_99997 and s.e = 2_0 × 10- J, 

at = -0 .59217+0 .070263(Pe+0 .14)  - I  (17) 

with r 2 = 0 99981 and s e_ = 1.1 × 10 -~ ,  

a2 = -0_16391 + 0  089267Pe - °  -~ 

_0.017464(Pe-0 55)2 (18) 

with r ~- = 0_99967 and s.e = 7 .2x lO -4 

a3 = - 0  12706+0 029177Pe -°47s 

-O016133(Pe-°*75):+OO16354(Pe-°475) 3 (19) 

with r 2 = 0 99948 and s.e_ = 1.5 x 10 -4 

Most  coefficients correlanons are of  the first degree, 
except equations (13), (18) and (19). In the following, 
correlations of  lower degree are proposed.  Instead of  
equation (13), coefficaent a0 can be correlated, m the 
range 0_5 ~< Pe <~ 30, by 

ao = 0_019117-0 lOl91(Pe+  i.3) - I  (20) 

with r "~ = 0 99986 and s_e = 2 .4x  10 -4. Coeffictent 

a:, with n = 3, can be correlated, in the range 
02  ~< Pe ~< 30, by 

a:  = - 0  15206+0 12272(Pe+ 1)-~ (21) 

with rZ= 0.99962 and s e. = 6 ,7 x 1 0  -4. Similarly, 
equation (19) can be reduced to 

a3 = - O. 13001 + 0.033062Pe- 03 a 

-0 .015596(Pe -  ° 3a) 2 (22) 

with r 2 = 0.99835 and s.e. = 2.5 x 10 -4, in the same 
range of  Peclet number  

Comparison with expertmental results 
-.So In Table 3 expenmenta l  values of  hardening depth 

obtained with a square laser beam by Kou et al [4] 
are compared with those calculated by equations (8), 
(8'), (12) and (12') o f  this paper. 

- . 8 0  Expenments  were car'ned out with k = 29.5 W m -  J 
K - j ,  ~ = 4 . 1 x 1 0  -6 m 2 S - I  , To= 780 K ;  b = 1 2  
m m ;  v = 3 8  mm s -~,  q o = 4 0 0 x l 0 7 ,  3 .40x 107, 
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304X107. 276X 107 W m-'-, the resulting Peclet 
number being equal to 27 9. Thermal properties were 
assumed at 800°C, according to the suggesuons of 
Kou et al. [4] The agreement between data from 
different sources is generally good. The table shows 
that experimental data agree with numerical values 
obtained from equation (8") better than with those 
from equation (8), m spite of the large Peclet numbers 
Furthermore, for the (i-D), problem, on average the 
deviations corresponding to the first degree poly- 
nomml correlauon ( n =  1) in equation (12) are 
smaller than those corresponding to n = 3. Finally, 
for the (2-D), model, predictions by the second degree 
polynomial correlation from equation (12') agree with 
expenmental data better than those by the third 
degree one for T* higher than 0 62. On the contrary, 
values predzcted by the third degree correlation seem 
to be m better agreement for lower values of To*. 

CONCLUSIONS 

Two models for the prediction of hardcmng depths 
and maximum temperatures at various depths m laser 
and electron beam surface hardemng have been ana- 
lysed Referen~ was made to uniform and constant heat 
flux acting for a finite time over a semi-infinite solid, 
( I -D) .  and to a umform strip heat source moving at 
a constant velocity over a semi-infinite body, (2-D)~, 

Diagrams plotting hardening depth as a function of 
austemtlzauon temperature and Peclet number show 
that, for Pe > 10. Zh can be predicted by the simpler 
(l-D)~ model ff a neghglble error ms accepted For 
Pe < 10, errors associated with the (l-D)~ predictions 
become higher and the (2-D),, model is to be resorted 
to get more useful results. 

All results are vahd if no surface melting occurs 
To thin aim both a diagram and a correlation for the 
maximum surface temperature vs Peclet number, in the 
range 0 ! ~< Pe <~ 30, are provided for the (2-D)~ model 

For the (l-D), model the maximum dimensionless 
temperature attained at any depth depends only on 
the dimensionless depth, It is plotted and simply cor- 
related to the depth to show that in laser and electron 
beam solid state hardening of steels hardening depth 
cannot be higher than about 0.4, otherwise surface 
melting occurs_ 

On the grounds of the afore-mentioned results, the 
correlation for predicting the hardemng depth as a 
function of the dimensionless meaningful parameters 
Peclet number and austenitizat]on temperature are 
given m ranges of variables of practical interest 
(O_I ~ Pe <<. 30, O I5 <~ T* <~ I O, O <~ Zh <~ I O) 

Results from diagrams and correlations were com- 
pared with experimental data avadable from ref. [4] 
Agreement is generally good, the maximum dewat]on 
being 9 1% 
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MODELES THERMIQUES SIMPLIFIES POUR LE DURCISSEMENT SUPERFICIEL PAR 
LASER ET FAISCEAUX D'ELECTRONS 

Rdsum&-Les mod61es thermiques slmphfi6s pour les traltements superficlels de durctssement par laser et 
falsceaux d'61ectrons peuvent &re tr6s utiles pour les uUhsateurs indusmels La profondeur de la zone 
durcle en fonet~on de la temp6rature d'aust6nitlsatlon et du nombre de Peclet a 6t6 6valu6e L'analyse, 
hmlt6e au cas de non fuston superficlelle, a 6th bas6e sur les solutions analyt~ques des probl,~mes des sources 
de chaleur monod~menstonnelles stattonnmres et bt-dimensionnelles d'une bande umforme en mouvement 
Des corr61ations pour la pr6dtctlon so~t de la profondeur de durclssement solt de la temp6rature maximale 
ont 6t6 donn6es au moyen de param6tres adimenslonnels phys]quement sigmficatlfs Les valeurs calcul~es 

ont ausst 6t6 eompar6es avec des r6sultats report6s par d'autres auteurs 

VEREINFACTE TERMISCHE MODELLE FUR DIE OBERFLACHENAUSHARTUNG 
MITFELS LASER- UND ELEKTRONENSTRAHLEN 

Zusaunenfgssung--Veremfachte termtsche Modelle fur Oberfl/~chenaushartungsbehandlungen m]ttels 
Laser- und Elektronenstrahlen haben stch sehr nutzhch erwtesen Die Tmfe der ausgeharteten Zone ist 
m Abhangtke]t vonder  Austenitisierungstemperatur und Peclet's Zahl berechnet worden Dm Analyse 
wlrd aufdie Falle ohne Oberflachenschmelzen beschrankt Dte angewandten Modelle stOtzen stch auf die 
analyt~schen Losungen tm Fall emer stattonaren monodtmenstonallen Warmequellen und lm Fall emes 
b]dtmens]onallen gletchformlgen Bandes das tm Bewegung sich befindet Die Bezmhungen, die Vorausage 
sowohl der Aushartungstmfe als auch der hochsten erre~chten Temperatur erlauben, stud mtttels adtmen- 
sionallen von physlcahscher Bedeutung Parameter angegeben worden Die berechneten Werten stud also 

mtt den Ergebmssen anderer Authoren vergllechen worden 

YHPOIIIEHHblE TEH3]OBblE MO~[F_JIH FIOBEPXHOCTHOFO YHPOqHEHH.q C 
H O M O I ~ b l O  Y l A 3 E P H H X  H ~BEKTPOHHbIX FlYqKOB 

AIBOTaBImI~YnpoIIIeHHMC TCrlJlOnlde MOhaIR nosepx~ocTHoro ynpoqntmsa c noMouu, m na~epHidx H 
3BCKTpOHHMX nyqKOB Mory-r ycll~lutlo npHMeHlrl'l~n B npoMI4illnKeHHO~'VH. OHeHiulal~l~g rJly6HIla ynpoq- 
HeHHII Kax I~yHKUIlll TCM~CpaTypM aycTctm3atmx x ~uc~a l'leEne s 3aAaqax O~OMeHoro CTaUxoHap- 
HOrO H aayMepnoro oJmopo~oro mmxexHa n.r[acTilHqaTElX FIC'TOqHHEOB TCI121a ~ 3  yqeTa ILqa6.qCllHII 
FIpKso~TCa n u e x m a e  COOTHOm~U RJIi pacqeTa r~ly6HH yllpOqHeHHg R MalCCHM831bHsJX TCMnepaTyp 
qepe3 6e3pa3MepHme n a p ~ e T p ~ .  PacqeTnue 3HaqeHHn cpanHHaaioTcn c 3 x c n e p s M e ~ r r a ~ s x ~ .  pe3yas- 

rara~m, n o a y ~ e n . u ~ m  a p y r ~ m  aBropa~m 


