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Abstract—Simplified thermal models in laser and electron beam surface hardening can be very useful to

mdustnal users Hardening depth as a function of austemtization temperature and Peclet number 1s

evaluated for one-dimensional stationary and two-dimensional uniform stnp moving heat source problems

without melting. Reliable correlations for predicting both hardening depths and maximum temperatures

are given 1n terms of dimensionless meaningful parameters Calculated values are also compared with
expenmental results reported by other authors

INTRODUCTION

SEVERAL solutions of the temperature field in a semi-
mfimte solid heated by a moving heat source can
be applied 1n numerous mechanical processes, €.g 1n
sliding solids and 1n surface treatments (1, 2] The
latter have recently drawn a great deal of attention 1n
industnal applications, due to the development of
high-power laser surface treatments of metals. There-
fore, it 1s felt a growing need of models predicting the
resultant temperature field 1n the bodies, as simple as
to be suitable for industrial users

A simplified model proposed by Chen and Lee [3]
showed the existence of a critical velocity below which
the effects of a Gaussian moving heat source become
neghgible and the temperature field 1s reasonably
coincident with the one due to a stationary source
Kou et al [4] developed a finite-difference numencal
model for the three-dimensional heat flow 1n a sems-
infimte body with a rectangular moving spot. Both
surface heat losses and temperature dependence of
surface absorptivity and thermal properties were
taken into account Should thermal properties be
assumed constant, a better agreement with the van-
able properties model 1s obtained 1if properties are
evaluated at a temperature above the austenitization
one rather than at room temperature. The calculated
results based on high-temperature constant thermal
properties were In a good agreement with exper-
imental ones from the same authors By assuming no
heat losses, constant absorptivity and properties, a
very simple correlation predicting the maximum sur-
face temperature for a square spot was given. It
approaches that of the one-dimensional (1-D) model,

for Peclet numbers higher than 10 La Rocca [5] gave
a detailed analysis of the 1-D models for both a semi-
infimte body and a finite slab Ashby and Easterling
[6] and Li er al. [7] denved approximate solutions of
the thermal field for a Gaussian moving heat source.
Equations for the temperature field were combined
with kinetic equations describing the homogenization
of austenite and were able to predict the structure and
the hardness of the treated region as a function of
depth below the surface On the basis of experimental
results, Davis es a/ [8] modified the solution for the
hardening depth as a function of the power and vel-
ocity of a Gaussian beam proposed in ref. [9] More-
over, starting from the equation of heat conduction
for a Gaussian moving source, they performed an
asymptotic analysis 1involving several approxi-
mauons, which yielded simphfied solutions. Variable
specific heat 1s accounted for by a quadratic approxi-
mation that cannot render the behaviour at the Curie
point and makes the solutions difficult. For large
Peclet numbers, the problem of the heat transfer
around the contact region of sliding solids was
reduced by Yuen [10] to a transient 1-D heat con-
duction 1n stationary bodies case. The simple model
provided useful results only within the contact region.
The same author [11] derived closed form expressions
for the temperature fields which compared well with
numerical solutions for Peclet numbers greater than
10. Festa et al [12] analysed the two-dimensional (2-
D) solution for a uniform strip heat source moving at
a constant velocity along the surface of a semi-infinite
body and denved the ratio between the maximum
temperature given by the 2-D model and that given
by the 1-D model This ratio can be used for esti-
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b hot spot half-width

k thermal conductivity

K, modified Bessel function of the second
kind, order zero

n polynomial degree

Pe Peclet number, equation (2b)
q heat flux

t time

T temperature

T* dimensionless temperature, equation (2c)
T dimensionless temperature, equations (7)

and (7)
heat source velocity
v heat source vectonal velocity
x,z Cartesian coordinates
X, Z dimensionless Cartesian coordinates,

equations (2a).

NOMENCLATURE

Greek symbols

a thermal diffusivity
A deviation, 100 (Z, .— Z,)/Z;, .
¢ vanable, equations (2a)
I integration variable
& dimensionless time, equations (2a)
T dwell time.
Subscripts
1-D,z or 1 stationary one-dimensional

2-D,yor2 moving two-dimensional
austenitization

experimental

hardening

maximum

350 o0

mating the range of Peclet number and depth within
which the predictions of the two models are n a satis-
factory agreement

The two-dimensional temperature field due to a
uniform strip heat source over the surface of a semi-
infinite body, (2-D),, can be very useful in modelling
both high power laser surface treatments with a square
spot and electron beam treatments, where xy beam
scanning 1s carried out. As already noted, the simplest
1-D stationary model with uniform heat flux acting
over a semi-infinite body for a finite time, (1-D),, can
be employed only for large Peclet numbers. The (2-
D), solution, derived by Jaeger [1] and Blok [13], has
been widely used (see for instance refs. [11, 12]).

In laser and electron beam solid state hardening
various requirements must be fulfilled a limited
power of the heat source, no surface melting and a
given hardening depth must be taken into account.
To this aim, simplified models are useful tools for
industrial users They should predict hardening
depths and maximum surface temperatures by easy
and rehable correlations 1n terms of physically mean-
ingful dimensionless parameters

In this paper reference is made to surface treatments
of hardenable steels by solid state hardening and the
following assumptions are made (i) no surface melt-
g occurs, (ii) austenite transformation occurs at any
depth at which the dynamic transformation tem-
perature 1s attained for any length of time, (iu) cooling
rate 1s fast enough to ensure hardening of all the
austenitized zone. Using (2-D), and (1-D), models,
hardening depth as a function of austenitization tem-
perature and Peclet number is evaluated 1n ranges of
the involved vaniables being of practical interest. For
the (1-D), problem both maximum temperatures
attained at various depths and hardening depths
are non-dimensionally correlated with process

parameters. For the (2-D), model a correlation 1s
dertved, which predicts hardening depths for given
process parameters as well as the maximum surface
temperature 1s simply correlated with the Peclet num-
ber Eventually, theoretical predictions are compared
with experimental results reported 1n ref [4].

MATHEMATICAL DESCRIPTION AND
SOLUTION

The exact solutions of linear heat conduction prob-
lems 1n a semi-infinite isotropic homogeneous body
at uniform init1al temperature heated by a surface heat
source are presented in ref. [5] for a stationary uniform
constant heat flux over the whole surface during a
finite ime, (1-D),, and 1n refs [12, 14] for a moving
uniform constant strip 25 wide, (2-D), With reference
to Figs. 1(a) and (b), respectively, thermal properties
being assumed ndependent of position, the solution
of the (1-D), problem 1s

. _ 2qgﬂl”2 1/2 z
Tip.(z,0) = S {t 1erfc W
I
() (t—1)"* 1erfc |:(4a(t—1'))”2:|} M
where
0 for <1
o) = {1 for r>1

7 bemng the dwell time, that 1s the amount of time the
spot on the surface 1s exposed to the umform and
constant heat flux (in the (2-D), problem 1t can be
expressed as 7 = 2b/r) The solution of the (2-D),
problem 1s
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(a)

F1G. | Semi-infinite body heated over the surface: (a) uni-
form heat flux for a finite time amount, (b) moving heat
source 2b wide
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In equations (1) and (1”) T 1s the temperature rise

The above equations can be written 1n dimen-
sionless form Let

1)

¥ x .z _u t
~ (dar)VY’ " (4ar) V2’ = 1 T
(2a)
vb 2 ]
Pe = 2—1 = [——(4011:)”2] (Zb)
. T

For the sake of brevity, T{p, and T5p, will be indi-
cated as 71 and T7, henceforth
Then, equations (1) and (1°) can be written as

T1(Z,&, Pe) = Pe” "2 (£ 1erfc (2/E'7?)
—8(HE-D"ierfe [Z/(E~D')} )
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where

0 for
1 for

i<l

M@={ o1

and
T3 (X,Z,& Pe) = ! ) Z—z
(X & Pe) = g Py, P :

o] PP D 2]

zl,:
_erfl:Pel/z(X/Pe “;}2/2)—6%]}5% )

Equations (3) and (3’) allow the evaluation of the
depth, Z,, where the austenitization temperature,
T7 ,1s attained, provided Z 1s considered as the depen-
dent vanable Thus, first of all the maximum tem-
perature at every depth must be determined This can
be accomplished by correlating Z with the time, ¢,
at which maximum temperature 1s attained For the
(1-D), model La Rocca [5] gives

E¢-DiIn[¢/(E-1)] =222 @
For the (2-D), model, any X undergoes the same
temperature profiles as a function of &, for given
Z and Pe It is suitable to wnte the equation for
X = Pe"?/2, as shown In ref [12]
exp (—2Pe)K,o{2[(Z* + Pe(1 — £)*) Pe]"/?}
— K {(2[(Z*+ Pe EH)Pe]V?} =0 (4)

For the (1-D), solution, introducing ¢ = f(Z) from
equation (4) into equation (3) yields

Tiw(Z, Pe) = F(Z) Pe™'? (%)
For Z = 0, equation (5) becomes
T (0, Pe) = (n Pe)~ " (6)
Let
Tim(Z, Pe)
¢ __Im\V 7 7
Tin = 75.0.P0 O

dividing equation (5) by equation (6) yields
T¥n(Z2) = n'2F(2) ®

For the (2-D), solution, by introducing into equa-
tion (3) £ = g(Z, Pe) from equation (4°), one gets

T3n(Z, Pe) = (n Pe)~">G(Z, Pe). 5)
Let
T3m(Z, Pe)
x _ 2mif” RS ’
T Tt.(0, Po) )
dividing equation (5) by equation (6) yields
T3.(Z, Pe) = G(Z, Pe). 8"

The dimensionless temperature in equations (7) and
(7") 1s physically meaningful and simpler than that in
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equation (2c); furthermore, 1t makes the maximum
temperature independent of the Peclet number

The hardening depth can be obtained by inverting
equations (8) and (8") This yields, for the (1-D),

Z,=F (T, 9
when T7,, 1s equal to T? and, for the (2-D),
Z, = Gz '(T%n. Pe) 9)

when T% 1s equal to T?

Since the 1nversion of equations (8) and (8”) cannot
be performed analytically, it was carned out by
empirical expressions. Z, values were calculated iter-
atively by equations (3) and (3"), as a function of Pe
and T}, and T, for (1-D), and (2-D),, respectively

RESULTS

The simplhfied models presented 1n the preceding
section were used for a rather easy evaluation of hard-
ening depth and maximum surface temperature 1n the
high heat flux surface treatment of matenals.

Hardening depth values were calculated at an
approximation of 10~° for the (1-D), and of 10~ for
the (2-D),. The solution of equations (4) and (4") was
carried out by the Newton—Raphson method at an
approximation of 10~°; the modified second kind
Bessel functions, evaluated through the expressions
given m Chap 9 of ref. [15], are affected by a relative
error of magnitude 10~® Maximum temperature
values for the (2-D), were evaluated by a numerical
integration of equation (3’) at an approximation of
10~ The error function in equation (3') and 1erfc (x)
i equation (3) were evaluated by the expressions
given 1n Chap 7 of ref. [15] Calculations were made
for 1072 < Pe<10%,005< T <land0gZ <4

Results are first presented 1n diagram form and
1n terms of the dimensionless temperature defined 1n
equation (2c), which allows a direct comparnson
between the predictions of (1-D), and (2-D), models
Hardening depth as a function of Peclet number at
various austenitization temperatures 1s presented in
Figs 2 and 3 for (2-D), and (1-D), models, respec-
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FiG 2 Hardening depth vs Peclet number at various austen-
itization temperatures in (2-D), model
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FiG 3 Hardening depth vs Peclet number at vanious austen-
1ization temperatures in (1-D), model

tively They show that, for a given Z,, the higher T*
the lower Pe. This means that in the (2-D), the lower
the heat flux the lower the velocity of the spot for a
given width of the stnip and a given thermal diffusivity.
Figures show, also, that the lower T the higher the
slope of the curves. As expected, Z, values predicted
by the two models are 1n good agreement for high
Peclet numbers (> 10) while at low values (< 1) the
(1-D), overpredicts the hardeming depth. Figure 2 sug-
gests that significant hardening depths can be achieved
with a practically stationary source, that 1s for very
low Peclet numbers.

Maximum surface temperatures vs Peclet numbers,
according to the (2-D), model, are presented 1n Fig
4, which allows an easy companson between the
maximum temperature attained in the material and
1ts melting temperature.

Hardening depth vs T at various Pe 1s plotted in
Fig. 5, which suggests considerations similar to those
resulting from Fig 2. Furthermore, for 10 < Pe, the
high slope of the curves discloses how the accurate
prediction of hardening depth strongly depends on
the good knowledge of austenitization temperatures

10 16" 10°

1r|l|lll L LI B

(2-D),.2=0

0.5

1lll|ll| I N I

o L1
10° 10' pe 10
FIG 4 Maximum surface temperature vs Peclet number 1n
(2-D), model
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Fic 6 Maximum temperature vs depth in (1-D), model.

Maximum temperature correlations

In the following, correlations for the prediction of
maximum temperature are presented. They are based
on both models and are within ranges of variables of
practical 1nterest. For the (1-D), problem the
maximum temperature attained at various depths has
been correlated to the depth by the following equa-
tions .

TY. =ap+a, exp (a,2) (10a)
for0<Z < 1and
*m=€xp[—(ap+ta,Z+a,Z°+ -+a,Z")]
(10b)

for 0<Z<1 and n=2 and 3, the relevant
coefficients being reported 1n Table 1. This discloses
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FI1G. 7. Maximum surface temperature vs Peclet number in
(2-D), model

high values of regression coefficients for all the pro-
posed correlations It can be noted that equation (10a)
18 suitably invertible for an easy evaluation of F~'(T)
In Fig. 6 the maximum temperature T7,, 1s plotted vs
depth, Z, according to equation (8), together with
some values derived from equations (10). The figure
clearly shows that in solid state hardening of steels Z,
values cannot be higher than about 0.4 since this value
yields T?, ~ 0.5, namely at the surface the melting
temperature (=~1600°C) is attained for an austen-
1tization temperature of 800°C.

The maximum temperature attained at the surface
was correlated with Peclet number in the form

% . = [0.14304+0.99566(Pe +0.0205)~° "}~
amn

for 0.1 < Pe <30, with r>=0.99992 and se =
8 8x 10~* In Fig. 7 the maximum temperature 77,
1s plotted vs Peclet number at Z = 0, according to
equation (8'), together with the same values derived
from equation (11).

Hardening depth correlations

The hardening depth was correlated with the
austemtization temperature. For the (1-D), the
eXpression 1§

Z,=ay+a InTt+- +a,(InT¥" (12)
for 02<T*<1, where T?!=T}, Relevant
coefficients are reported in Table 2

For the (2-D), problem the correlation 1s

Zy=apta InT*+ --+a,(InTH" (12)

for 01 < T* < 1, where T = T?,. The coefficients

Table 1 Parameter and coefficients of equations (10a) and (10b)

Equation n a, a, a, a, r? s.e
(10b) 3 —027842 ~010529 193640 —000831 099994 44x107?
(10b) 2 — —053316 210568 —0.02121 099977 8.3x10~°
(10a) — — —224530 0.89516 0.11563 099973 34x10°
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Table 2 Parameter and coefficients of equation (12)

n a, a, a, a, r’ s.e

3 —~0 12348 —0.15495 —0 59076 —0 0020535 099999 86x10-"
2 — 014465 —0.39982 0021748 099890 10x10°?
1 — — —062864 —0036393 0.98954 31x10"°

in equation (12') depend on Peclet number. This
required a prehminary evaluation of the above-men-
tioned coefficients through the same equation (12') 1n
a suttable range of Pe. Values for n = 2 and 3 are
presented 1n Figs 8 and 9, respectively Figures show
that, for Pe — oo, the values of coefficients 1n equation
(12’) tend to those of the corresponding coefficients
1n equation (12) for the (1-D), problem This agrees
well with results presented in refs [11, 12]. Coefficients
were correlated with Peclet numbers, n the range
01 < Pe < 30, by the following expressions.

Forn=2.
aq =0027187—-0 071849 P~ 0 5¢
+0.019715(Pe=°%%)2  (13)

with a regression coefficient (r?) of 099866 and a
standard error (s.e.) of 8.6 x 107*;
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Fic 9 Coefficients in equation (12') forn = 3

a, = 0.40984+0 10780(Pe+0.05)° %3
withr* =099986 andse =19x10"2;
a; = 0.12969+0 078220(Pe+0 025)=°%* (15)
with r? = 099946 andse. = 1 7x 10’

Forn=3

(14

a, = [46.98815—30 71564(Pe+3)°%)""' (16)
with r? = 099997 ands.e =2.0x 10!,
a, = —0.59217+0.070263(Pe+0.14)~" (17)
with r> =09998] andse. = 1.1 x 1072,
a; = —0.16391+0 089267 Pe~° 5
~0.017464(Pe= %) (18)
with r* = 099967 ands.e = 7.2x 107 ¢,
a; = —012706+0 029177 Pe~ %473
~0016133(Pe™2*"%)2 + 0 016354(Pe~"7%)>  (19)

with r2=099948 and s.e. = 1.5x 10~ *

Most coefficients correlations are of the first degree,
except equations (13). (18) and (19). In the following,
correlations of lower degree are proposed. Instead of
equation (13), coefficient a, can be correlated, in the
range 0.5 < Pe < 30, by

a, = 0.019117—-0 10191 (Pe+1.3)~" (20)

with r* = 099986 and s.e =2.4x10"*. Coefficient
a,, with n=3, can be correlated, in the range
02 < Pe <30, by

a; = —015206+0 12272(Pe+1)""  (21)

with r?=0.99962 and se. = 6.7x10"* Similarly,
equation (19) can be reduced to

a; = —0.13001+0.033062Pe~°
—0.015596(Pe=°%)2 (22)

with r* = 0.99835 and s.e. = 2.5x 10~*, in the same
range of Peclet number

Comparison with experimental results

In Table 3 expenimental values of hardening depth
obtained with a square laser beam by Kou er a/ {4]
are compared with those calculated by equations (8),
(8°), (12) and (12’) of this paper.

Experiments were carnied out withk = 29.5Wm™!
K, a=41x107*m?2s™' T.=780 K; b=12
mm; v=38 mm s, g,=400x10", 3.40x107,
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Table 3 Comparison of numerical resulls with experimental data from ref [4]
(Z-D)A

(-Dy,
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‘ 304x107. 276x 10’ W m~?2 the resulting Peclet
number being equal to 27 9. Thermal properties were

a -~ o
SN assumed at 800°C, according to the suggestions of
9 Kou er al. [4] The agreement between data from
E ‘ different sources 1s generally good. The table shows
8 - o o that experimental data agree with numencal values
§. N ASEC obtained from equation (8°) better than with those
@ ceee from equation (8), in spite of the large Peclet numbers
Furthermore, for the (1-D), problem, on average the
deviations corresponding to the first degree poly-
) q 2223 nomial correlation (n=1) in equation (12) are
b It ! smaller than those corresponding to n» = 3. Finally,
= for the (2-D), model, predictions by the second degree
2 polynomial correlation from equation (12°) agree with
% .l=nag expenmental data better than those by the third
§.N Ry degree one for TF higher than 0 62. On the contrary,
values predicted by the third degree correlation seem
to be 1n better agreement for lower values of T*.
~ N~ ——
i <Y <+ o~ CONCLUSIONS
~ Two models for the prediction of hardening depths
= and maximum temperatures at various depths in laser
=
s o and electron beam surface hardening have been ana-
AN |[_&Q2s lysed Reference was made to uniform and constant heat
g |Seee flux acting for a finite time over a semi-infinite sohd,
(1-D),, and to a umiform strip heat source moving at
a constant velocity over a semu-infinite body, (2-D),.
N gl Z0min Diagrams plotting hardening depth as a function of
= ! austenitization temperature and Peclet number show
=) that, for Pe > 10, Z, can be predicted by the simpler
= (1-D), model 1f a neghgible error 1s accepted For
g lases Pe < 10, errors associated with the (1-D), predictions
%N odzz become higher and the (2-D), model 1s 1o be resorted
to get more useful results.
All results are valid if no surface melting occurs
< A To this aim both a diagram and a correlation for the
e~ i maximum surface temperature vs Peclet number, in the
z range 0 1 < Pe < 30, are provided for the (2-D), model
% For the (1-D), model the maximum dimensionless
?i'N‘ = E 28 temperature attained at any depth depends only on
cooo the dimensionless depth. It 15 plotted and simply cor-
related to the depth to show that in laser and electron
beam sohd state hardening of steels hardening depth
N VO . .
QT ow cannot be higher than about 0.4, otherwise surface
) ' melting occurs.
g On the grounds of the afore-mentioned results, the
g o~ oo correlation for predicting the hardening depth as a
g 2R funcuion of the dimensionless meaningful parameters
eees Peclet number and austenitization temperature are
given 1 ranges of vanables of practical interest
- (0.1 £ Pe<30,015<T*<10,0<2,<10)
= - Results from diagrams and correlations were com-
N:"'E ne o pared with experimental data available from ref. [4]
E o==° Agreement 1s generally good, the maximum deviation
= being 9 1%
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MODELES THERMIQUES SIMPLIFIES POUR LE DURCISSEMENT SUPERFICIEL PAR
LASER ET FAISCEAUX D’ELECTRONS

Résumé—Les modéles thermiques simplifiés pour les traitements superficiels de durcissement par laser et
faisceaux d’électrons peuvent étre trés utiles pour les utilisateurs ndustriels La profondeur de la zone
durcie en fonction de la température d’austénitisation et du nombre de Peclet a été évaluée L'analyse,
limitée au cas de non fusion superficielle, a €té basée sur les solutions analytiques des problémes des sources
de chaleur monodimensionnelles stationnaires et bi-dimensionnelles d’une bande uniforme en mouvement
Des corrélations pour la prédiction soit de la profondeur de durcissement soit de la température maximale
ont été données au moyen de paramétres adimensionnels physiquement significatifs Les valeurs calculées
ont aussi été comparées avec des résultats reportés par d’autres auteurs

VEREINFACTE TERMISCHE MODELLE FUR DIE OBERFLACHENAUSHARTUNG
MITTELS LASER- UND ELEKTRONENSTRAHLEN

Zusammenfassung—Vereinfachte termische Modelle fur Oberflachenaushartungsbehandlungen mttels
Laser- und Elektronenstrahlen haben sich sehr nutzlich erwiesen Die Tiefe der ausgeharteten Zone ist
in Abhangikeit von der Austenitisierungstemperatur und Peclet’s Zahl berechnet worden Die Analyse
wird auf die Falle ohne Oberflachenschmelzen beschrankt Die angewandten Modelle statzen sich auf die
analytischen Losungen im Fall emer stationaren monodimensionallen Warmequellen und 1m Fall eines
bidimensionallen gleichforrmigen Bandes das im Bewegung sich befindet Die Bezichungen, die Vorausage
sowohl der Aushartungstiefe als auch der hochsten erreichten Temperatur erlauben, sind mittels adimen-
sionallen von physicalischer Bedeutung Parameter angegeben worden Die berechneten Werten sind also
mit den Ergebnussen anderer Authoren verghechen worden

VITPOIEHHBIE TENJIOBbLIE MOJEJIH MOBEPXHOCTHOI'O YITPOUHEHHUA C
MMOMOMbIO JIAZEPHBIX U DJIEKTPOHHBIX NMYYKOB

ANBOTAIES— Y NPOLIEHHKE TEIUIOBhle MOJEIH NOBEPXHOCTHOTO YNPOYHEHHS C MOMOLIbIO JA3EPHbIX U

31K TPOHHKIX NYYKOB MOTYT YCMELIHO MPHMCHSTLCA B MPOMBILLTEHHOCTH. OueHHBacTCA riy6una ynpoy-

HEHHA KaK QYHKLHS TeMMepaTypH ayCTCHH3AaUMM H 4icia [lexse B 3a4avax OJHOMEHOro CTaLMOHAp-

HOTO H IBYMCPHOTO OJHOPOJHOTO NBAXCHHA ILTACTHHYATHIX HCTOYHHKOB Tcua 6e3 ydeTa IiaBlicHHA

IprABOASTCA RaACKHKE COOTHOLWIEHHAS 118 pacyeTa ri1yOHH yIpOTHEHHS H MAXCHMAJbHLIX TeMMepaTyp

yepe3 GeapaMepinle napamMeTphl. PacueTHule 3HaeHHA CPaBHHBAIOTCAH C JKCNIEPHMEHTAIBHBIMH PE3yb-
TaTaM¥, NOJYYCHHLIMH APYTHMH aBTOPaMH



